MATEMÁTICAS PARA LA ECONOMÍA - 2014/2015

Hoja de problemas 2. Límites y continuidad

- 2-1. Sean $f(x) = \frac{1}{x}$ y $g(x) = x^2 1$.
 - a) Hallar el dominio y la imagen de estas funciones;
 - b) Hallar f(g(2)) y g(f(2));
 - c) Hallar f(g(x)) y g(f(x)).

Sol. a)
$$D(f) = \mathbb{R} - \{0\} = R(f), D(g) = \mathbb{R}, R(g) = [-1, +\infty); c)$$
 $(f \circ g)(x) = \frac{1}{x^2 - 1}, (g \circ f)(x) = \frac{1}{x^2} - 1.$

2-2. Hallar el dominio y la imagen de las siguientes funciones:

a)
$$f(x) = \ln(\sin x)$$
 b) $g(x) = \ln(\sin^2 x)$ c) $h(x) = \ln \sqrt{-x^2 + 4x - 3}$.

Sol. a)
$$D(f) = \{x : \operatorname{sen} x > 0\} = \bigcup_{k \in \mathbb{Z}} (2k\pi, (2k+1)\pi), \ R(f) = (-\infty, 0]; \ \text{b)} \ D(g = \{x : \operatorname{sen} x \neq 0\} = \bigcup_{k \in \mathbb{Z}} (k\pi, (k+1)\pi), \ R(g) = (-\infty, 0]; \ \text{c)} \ D(h) = (1, 3), \ R(h) = (-\infty, 0].$$

2-3. Repasar las gráficas de las funciones:

$$a) f(x) = x^2$$
 $b) f(x) = e^x$ $c) f(x) = \ln x$ $d) f(x) = \sin x$.

En cada caso dibujar las gráficas de las funciones siguientes a partir de las anteriores, interpretando geométricamente los resultados.

i)
$$g(x)=f(x+1)$$
 ii) $h(x)=-2f(x)$ iii) $p(x)=f(3x)$ iv) $s(x)=f(x)+1$ v) $r(x)=|f(x)|$ vi) $m(x)=f(|x|)$

- 2-4. Sean $f,g:I\to\mathbb{R}$ funciones crecientes. Discutir la verdad o falsedad de las siguiente afirmaciones:
 - a) f + g es una función creciente;
 - b) fg: es una función creciente;
 - c) f g es una función creciente si ambas funciones son positivas;
 - d) f g es una función creciente si ambas funciones son negativas.
 - **Sol.** a) Cierto; b) Falso: f(x) = g(x) = x y $(fg)(x) = x^2$ no es creciente. Sin embargo, es cierto si ambas funciones son positivas; c) Falso: considerar f(x) = x, g(x) = 2x en $(0, +\infty)$; Falso: considerar f(x) = x, g(x) = 2x en $(-\infty, 0)$.
- 2-5. Sean $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ funciones monótonas. Discutir cuando será $g \circ f$ creciente o decreciente dependiendo del comportamiento de f y g (en total, cuatro casos).
 - **Sol.** a) f, g ambas crecientes o ambas decrecientes; b) Una de ellas creciente y la otra decreciente.
- 2-6. Para cada una de las siguientes funciones, por ejemplo f, hallar los intervalos I, J para que $f: I \longrightarrow J$ sea biyectiva.

a)
$$f(x) = x^2$$
; b) $g(x) = \ln |x|$; c) $h(x) = \sin x$; d) $i(x) = \frac{x}{1 - x}$.

1

- **Sol.** a) Dos posibilidades: $I = [0, \infty)$ o $I = (-\infty, 0]$ y $J = [0, \infty)$;
- b) Dos posibilidades : $I = (0, \infty)$ o $I = (-\infty, 0)$ y $J = (-\infty, \infty)$;
- c) Para todo $k \in \mathbb{Z}$, $I = [(k + \frac{1}{2})\pi, (k + \frac{3}{2})\pi]$ y J = [-1, 1];
- d) Dos posibilidades: $I = (1, \infty)$ y $J = (-\infty, -1)$, o $I = (-\infty, 1)$ y $J = (-1, \infty)$.

2-7. Calcula la función inversa de las siguientes funciones:

$$f(x) = (x^3 - 5)^5; \quad g(x) = (\sqrt[3]{x - 5})^5; \quad h(x) = \ln\left(\frac{x - 1}{x - 2}\right); \quad i(x) = \frac{3x - 1}{x - 3}; \quad j(x) = \left\{ \begin{array}{cc} x + 3 & -3 \le x \le 0 \\ -2x & 0 < x \le 3 \end{array} \right.$$

Sol. a)
$$f^{-1}(x) = \sqrt[3]{5 + \sqrt[5]{x}}$$
; b) $g^{-1}(x) = 5 + (\sqrt[5]{x})^3$; c) $h^{-1}(x) = \frac{2e^x - 1}{e^x - 1}$; d) $i^{-1}(x) = i(x)$; e) $j^{-1}(x) = \begin{cases} x - 3, & \text{si } 0 \le x \le 3; \\ -x/2, & \text{si } -6 \le x < 0. \end{cases}$

2-8. Determinar si las siguientes funciones son pares, impares o ninguno de los dos casos:

a)
$$f(x) = \cos 5x$$
 b) $g(x) = \sin 2x$ c) $h(x) = \cos 5x \sin 2x$ d) $k(x) = \frac{x^2}{x^2 + 1}$ e) $l(x) = \frac{x^3}{x^4 + 1}$ f) $m(x) = \frac{x^3}{x^5 + 1}$ g) $n(x) = \frac{\arctan}{x}$

2-9. Sea f una función par y q una función impar. Demuestra que:

|g| es par; $f \circ g$ es par; $g \circ f$ es par; fg es impar; g^k es par (impar) si k es par (impar).

2-10. Determinar cuáles de las siguientes funciones son periódicas, y calcular su periodo: $f(x) = \sin 4x$; $g(x) = \tan \left(\frac{x}{3}\right)$; $l(x) = \sin(3x + 2)$.

- 2-11. Sea f una función cualquiera y g una función periódica. ¿Es posible afirmar que $f \circ g$ y $g \circ f$ sean periódicas? Justifica que $f(x) = \frac{\tan^2 3x + \ln(\tan 3x)}{1 + \tan 3x}$ es periódica.
- 2-12. Calcular:

a)
$$\lim_{x \to 0} \frac{4x^3 + 2x^2 - x}{5x^2 + 2x}$$
 b) $\lim_{x \to 2} \frac{x^3 - x^2 - x - 2}{x - 2}$ c) $\lim_{x \to 0} \frac{\sqrt{2 + x} - \sqrt{2}}{x}$

d)
$$\lim_{x \to \infty} \frac{x^2 - \sqrt{x}}{\sqrt{x^3 + 3x^4}}$$
 e) $\lim_{x \to \infty} \frac{\sin x}{x}$ f) $\lim_{x \to -\infty} \frac{x^2 \cos x + 1}{x^2 + 1}$

g)
$$\lim_{x \to -\infty} \frac{3x^3 + 2x^2 + x + 2}{x^2 - 7x + 1}$$
 h) $\lim_{x \to -\infty} \frac{x^4 - ax^3}{x^2 + 1}$ i) $\lim_{x \to 0} \frac{x^4 - x^3}{x^2 + b}$.

Sol. a)
$$-1/2$$
; b) 7; c) $1/2\sqrt{2}$; d) $1/\sqrt{3}$; e) 0; f) $\not\exists$; g) $-\infty$; h) $+\infty$; i) 0 $\forall b$.

2-13. Sabiendo que $\lim_{x\to 0} \frac{\sin x}{x} = 1$, calcular:

a)
$$\lim_{x \to 0} \frac{\sin^2(2x)}{x^2}$$
; b) $\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1}$

Sol. a) 4; b) 2; c) 3.

2-14. Calcula los siguientes límites:

i)
$$\lim_{x \to 1} (x - 1) \arcsin\left(\frac{\tan^4(x)}{1 + \tan^4(x)}\right)$$
.

ii) $\lim_{x\to 2} \frac{1+h^2(x)}{|x-2|}$, con h(x) una función con límite finito cuando $x\to 2$.

Sol. a) 0; b)
$$+\infty$$
.

2-15. Calcular:

a)
$$\lim_{x \to -3^+} \frac{x^2}{x^2 - 9}$$
; b) $\lim_{x \to -3^-} \frac{x^2}{x^2 - 9}$; c) $\lim_{x \to 0^+} \frac{2}{\sin x}$; d) $\lim_{x \to 0^-} (1 - 1/x)^{\frac{1}{x}}$; e) $\lim_{x \to 0^-} \frac{x^2 - 2x}{x^3}$.

Sol. a)
$$-\infty$$
; b) $+\infty$; c) $+\infty$; d) 0; $-\infty$.

2-16. Calcula todas las asíntotas de las siguientes funciones:

$$f(x) = \frac{x^3}{x^2 - 1};$$
 $g(x) = \frac{x^2 - 1}{x};$ $h(x) = \sqrt{x^2 - 1};$ $m(x) = \frac{1}{\ln x};$ $n(x) = e^{1/x}.$

Sol. a) x=1 y x=-1 son asíntotas verticales, y=x es asíntota oblicua en $\pm \infty$; c) y=x es asíntota oblicua en $+\infty$ y y=-x lo es en $-\infty$; d) x=1 es asíntota vertical y y=0 es asíntota horizontal; e) x=0 es asíntota vertical y y=1 es asíntotal horizontal en $\pm \infty$.

2-17. Hallar las discontinuidades (si las hay) de las funciones que siguen:

$$a)f(x) = \frac{|x-3|}{x-3};$$

$$b)f(x) = \begin{cases} x+\pi & \text{si} & x \le -\frac{\pi}{2} \\ \frac{x \sin x}{1-\cos x} & \text{si} & -\frac{\pi}{2} < x < \frac{\pi}{2}, & x \ne 0 \\ 1 & \text{si} & x = 0 \\ 0 & \text{si} & \frac{\pi}{2} \le x \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{x+1}{-x} & \text{si} \quad x \le -1. \\ -1/2(1-x^{-2}) & \text{si} \quad -1 < x \le 1 \\ \frac{\sin \pi x}{\pi} - 1 & \text{si} \quad 1 < x \end{cases}$$
 d) $(*)f(x) = \begin{cases} \frac{2x}{x+1} & \text{si} \quad x < -1. \\ e^{1/x} & \text{si} \quad -1 \le x < 0 \\ \pi & \text{si} \quad x = 0 \\ 1/x & \text{si} \quad 0 < x \end{cases}$

Sol. a) discontinua en x=3; b) no es continua en x=0 ni en $x=\pi/2$; c) no es continua en x=1; d) no es continua en x=1; e

- 2-18. Demuestra que todo polinomio de grado impar tiene al menos una raíz.
- 2-19. a) Usar el teorema de los valores intermedios para comprobar que las funciones que siguen tienen un cero en el intervalo indicado:

i)
$$f(x) = x^2 - 4x + 3$$
 en $[2, 4]$; ii) $f(x) = x^3 + 3x - 2$ en $[0, 1]$.

b) Obtener mediante particiones del intervalo y aplicaciones sucesivas de Bolzano, el cero con un error de ± 0.25 .

Sol. i) f(3) = 0, luego x = 3 es un cero de f con total exactitud; ii) f(1/2) = 1/8 + 3/2 - 2 < 0 y f(1) = 2 > 0, luego x = 0.75 es un cero aproximado con error menor que ± 0.25 .

- 2-20. Comprueba que las ecuaciones $x^4 11x + 7 = 0$ y $2^x 4x = 0$ tienen al menos dos soluciones.
- 2-21. Discutir en los casos siguientes si las funciones alcanzan extremos globales y/o locales en los intervalos indicados:

a)
$$f(x) = x^2$$
 $x \in [-1, 1]$ b) $f(x) = x^3$ $x \in [-1, 1]$ c) $f(x) = \sin x$ $x \in [0, \pi]$ d) $f(x) = -x^{\frac{1}{3}}$ $x \in [-1, 1]$

Sol. a) Máximos globales en -1 y en 1, mínimo global en 0; b) mínimo global en -1, máximo global en 1; c) máximo global en $\pi/2$, mínimos globales en 0 y en π ; d) mínimo global en 1, máximo global en -1.

- 2-22. Sustituir en el problema anterior el intervalo dado por $[0,\infty)$ o por \mathbb{R} en cada una de las funciones.
 - **Sol.** En $[0, \infty)$: a) Mínimo global en 0, no existe máximo global; b) Mínimo global en 0, no existe máximo global; c) mínimos globales en $(3/2)\pi + 2k\pi$, $k = 0, 1, 2, \ldots$, máximos globales en $(1/2)\pi + 2k\pi$, $k = 0, 1, 2, \ldots$; d) máximo global en 0, no existe mínimo global.

En \mathbb{R} : a) Mínimo global en 0, no existe máximo global; b) no existen máximo ni mínimo globales; c) mínimos globales en $(3/2)\pi + 2k\pi$, k entero, máximos globales en $(1/2)\pi + 2k\pi$, k entero; d) No existen máximo ni mínimo globales.

- 2-23. a) Sea $C(x) = \frac{3x^2 + x}{x 1} + 100$, la función de costes totales de producción, suponiendo $x \ge 7$. Comprueba si tiene asíntota oblícua cuando $x \to \infty$
 - x-1 tiene asíntota oblícua cuando $x \to \infty$. b) Considera la función $C_m(x) = \frac{C(x)}{x}$, es decir, los costes medios de producción. Comprueba que tiene asíntota horizontal cuando $x \to \infty$.
 - c) ¿Hay alguna relación entre la asíntota oblícua de la parte a) y la horizontal de la parte b)?

Sol. a)
$$y = 3x + 104$$
 es asíntota oblicua; b) $y = 3$.

- 2-24. Una entidad bancaria ofrece una cuenta corriente con las siguientes condiciones: los primeros 15.000 euros sin remunerar, y el resto al 7% de interés anual. Considera la siguiente función $i:[0,\infty)\longrightarrow\mathbb{R}$ definida como i(x)="interés obtenido en % al depositar un capital x y mantenerlo durante un año".
 - i) Obtener i(x);
 - ii) Calcular $\lim_{x\to\infty} i(x)$;
 - iii) ¿Existe algún capital c para el que i(c) = 7?;
 - iv) ¿A partir de qué capital se obtiene al menos un 6% de interés?;
 - v) Dibuja la función i.

Sol. i)
$$i(x) = 7(x - 250.000)/x$$
 si $x \ge 250.000$; $i(x) = 0$ si $x < 250.000$; ii) 7: iii) No; iv) $x = 1.750.000$.